Name: \qquad
\qquad
Unit 9 Quadratics Quiz Review

Questions 1 through 3 refer to the following:

Express the given radical in simplest radical form:

1) $\sqrt{128}$
A) $32 \sqrt{2}$
B) $8 \sqrt{2}$
C) $64 \sqrt{2}$
D) $16 \sqrt{2}$
2) $\sqrt{288}$
A) $96 \sqrt{3}$
B) $12 \sqrt{2}$
C) $48 \sqrt{6}$
D) $36 \sqrt{8}$
3) $-\sqrt{108}$
A) $-4 \sqrt{27}$
B) $-36 \sqrt{3}$
C) $-6 \sqrt{3}$
D) $-52 \sqrt{2}$
4) When $\sqrt{72}$ is expressed in simplest $a \sqrt{b}$ form, what is the value of a ?
A) 3
B) 2
C) 8
D) 6
5) What is the sum of $\sqrt{18}$ and $\sqrt{72}$?
A) $\sqrt{90}$
B) $3 \sqrt{10}$
C) $9 \sqrt{2}$
D) $6 \sqrt{3}$
6) What is the sum of $\sqrt{75}$ and $\sqrt{3}$?
A) 18
B) $6 \sqrt{3}$
C) $\sqrt{78}$
D) 15

Questions 7 through 9 refer to the following:

Solve the given quadratic equation by taking a square root and express irrational roots in radical form:
7) $(x+5)^{2}-7=0$

Show your work.

Answer: \qquad
8) $2(x-3)^{2}-12=0$

Show your work.

Answer: \qquad
9) $2(x+3)^{2}-64=0$

Show your work.

Answer: \qquad

Questions 10 and 11 refer to the following:

Solve the given equation, using factoring methods, for all values of the variable:
10) $-16 y=2 y^{2}+30$

Show your work.

Answer: \qquad
11) $27=x^{2}+2$

Show your work.

Answer: \qquad
12) What are the roots of the equation $2 x^{2}+7 x-1=0$?
A) $\frac{-7 \pm \sqrt{57}}{4}$
B) $\frac{7 \pm \sqrt{57}}{4}$
C) $\frac{7 \pm \sqrt{41}}{4}$
D) $\frac{-7 \pm \sqrt{41}}{4}$
13) What are the roots of the equation $x^{2}+3 x-1=0$?
A) $\frac{3 \pm \sqrt{5}}{2}$
B) $\frac{3 \pm \sqrt{13}}{2}$
C) $\frac{-3 \pm \sqrt{5}}{2}$
D) $\frac{-3 \pm \sqrt{13}}{2}$

Questions 14 through 16 refer to the following:

Solve the given equation using the quadratic formula and express the answer in radical form if needed:
14) $2 x^{2}+5 x-1=0$

Show your work.

Answer: \qquad
15) $3 x^{2}-7 x+1=0$

Show your work.

Answer: \qquad
16) $3 x^{2}=2 x+2$

Show your work.

Answer: \qquad
17) If the square of a positive number is decreased by five times the number, the result is 14 . Find the number.

Show your work.

Answer: \qquad
18) If the square of a negative number is decreased by 18 , the result is three times the number. Find the number.

Show your work.

Answer: \qquad
19) The sum of the squares of two consecutive odd integers is 202. Find the integers.

Show your work.

Answer: \qquad

One of two positive integers is 7 less than the other. If the product of the two integers is 78 , find the integers.

Show your work.

Answer: \qquad
21) The side of one square is 2 centimeters longer than the side of a second square. If the sum of their areas is $100 \mathrm{~cm}^{2}$, find the length of the side of each square.

Show your work.

Answer: \qquad
22) What are the roots of the equation
$x^{2}+4 x-16=0 ?$
A) $2 \pm 2 \sqrt{5}$
B) $2 \pm 4 \sqrt{5}$
C) $-2 \pm 2 \sqrt{5}$
D) $-2 \pm 4 \sqrt{5}$
23) (a) Write an equation that defines $\mathrm{m}(x)$ as a trinomial where $\mathrm{m}(x)=(3 x-1)(3-x)+$ $4 x^{2}+19$. [Show your work.]
(b) Use your answer from part (a) to solve for x when $\mathrm{m}(x)=0$. [Show your work.]

1) B
2) B
3) C
4) D
5) C
6) B
7) $-5 \pm \sqrt{7}$

WORK SHOWN: $(x+5)^{2}-7=0,(x+5)^{2}=7, x+5= \pm \sqrt{7}, x=-5 \pm \sqrt{7}$
8) $3 \pm \sqrt{6}$

WORK SHOWN: $2(x-3)^{2}-12=0,2(x-3)^{2}=12,(x-3)^{2}=6, x-3= \pm \sqrt{6}, x=3 \pm \sqrt{6}$
9) $-3 \pm \sqrt{32}$ OR $-3 \pm 4 \sqrt{2}$

WORK SHOWN: $2(x+3)^{2}-64=0,2(x+3)^{2}=64,(x+3)^{2}=32, x+3= \pm \sqrt{32}, x=-3 \pm \sqrt{32}$
10) $\{-5,-3\}$

WORK SHOWN: $-16 y=2 y^{2}+30,2 y^{2}+16 y+30=0,2\left(y^{2}+8 y+15\right)=0,2(y+5)(y+3)=0, y+5=0, y=-5$ OR $y+3=0, y=-3$
11) ± 5

WORK SHOWN: $27=x^{2}+2, x^{2}-25=0,(x-5)(x+5)=0, x-5=0, x=5$ OR $x+5=0, x=-5$
12) A 13) D
14) $\frac{-5 \pm \sqrt{33}}{4}$

WORK SHOWN: $2 x^{2}+5 x-1=0, x=\frac{-5 \pm \sqrt{25-4(2)(-1)}}{2(2)}=\frac{-5 \pm \sqrt{25+8}}{4}=\frac{-5 \pm \sqrt{33}}{4}$
15) $\frac{7 \pm \sqrt{37}}{6}$

WORK SHOWN: $3 x^{2}-7 x+1=0, x=\frac{7 \pm \sqrt{49-4(3)(1)}}{2(3)}=\frac{7 \pm \sqrt{49-12}}{6}=\frac{7 \pm \sqrt{37}}{6}$
16) $\frac{1 \pm \sqrt{7}}{3}$

WORK SHOWN: $3 x^{2}=2 x+2,3 x^{2}-2 x-2=0, x=\frac{2 \pm \sqrt{4-4(3)(-2)}}{2(3)}=\frac{2 \pm \sqrt{4+24}}{6}=\frac{2 \pm \sqrt{28}}{6}=\frac{1 \pm \sqrt{7}}{3}$
17) 7

WORK SHOWN: $x=$ pos. number, $x^{2}-5 x=14, x^{2}-5 x-14=0,(x-7)(x+2)=0 ; x=-2$ (reject) OR $x=7$
18) -3

WORK SHOWN: $x=$ neg. number, $x^{2}-18=3 x, x^{2}-3 x-18=0,(x-6)(x+3)=0 ; x=6$ (reject) OR $x=\mathbf{- 3}$
19) ± 9 and ± 11

WORK SHOWN: $x=1$ st odd integer, $x+2=$ next odd integer, $x^{2}+(x+2)^{2}=202, x^{2}+x^{2}+4 x+4=202,2 x^{2}+4 x-198=0$,
$x^{2}+2 x-99=0,(x+11)(x-9)=0 ; x+11=0, x=\mathbf{- 1 1},(-11)+2=-\mathbf{9}$ OR $x-9=0, x=\mathbf{9},(9)+2=\mathbf{1 1}$
20) 6 and 13

WORK SHOWN: $x=1$ st pos integer, $x-7=2$ nd pos integer, $x(x-7)=78, x^{2}-7 x-78=0,(x-13)(x+6)=0 ; x=13,(13)-7=6$
OR $x=-6$ (reject)
21) 6 cm and 8 cm

WORK SHOWN: $x=$ side of square $1, x-2=$ side of square $2, x^{2}+(x-2)^{2}=100, x^{2}+x^{2}-4 x+4=100,2 x^{2}-4 x-96=0$, $x^{2}-2 x-48=0,(x-8)(x+6)=0 ; x=8,(8)-2=6$ OR $x=-6$ (reject)
22) C
23) (a) $\mathrm{m}(x)=10 x+x^{2}+16$

WORK SHOWN: $(3 x-1)(3-x)+4 x^{2}+19,9 x-3 x^{2}-3+x+4 x^{2}+19,10 x+x^{2}+16$;
(b) $x=-8,-2$

WORK SHOWN: $10 x+x^{2}+16=0, x^{2}+10 x+16=0,(x+8)(x+2)=0$, If $x+8=0$, then $x=-8$. If $x+2=0$, then $x=-2$.

