Name:
CC Algebra

Sequences Quiz Review

1) What are the first four terms in the sequence whose general term is $\mathrm{f}(n)=3(-2)^{n-1}$?
A) $0,-6,12,-24$
B) $1,-6,12,-24$
C) $3,-6,12,-24$
D) $3,6,12,24$
2) What are the first three terms in the sequence whose general term is $f(n)=\frac{2 n}{n+1}$?
A) $1, \frac{4}{3}, \frac{3}{2}$
B) $0,1, \frac{4}{3}$
C) $1, \frac{1}{2}, \frac{1}{3}$
D) $\frac{4}{3}, \frac{5}{4}, \frac{6}{5}$
3) The sequence $1,-3,9,-27$ is best described as
A) both arithmetic and geometric
B) geometric
C) arithmetic
D) neither arithmetic nor geometric
4) The common ratio for the geometric sequence $6,-2, \frac{2}{3}, \ldots$ is
A) $-\frac{1}{3}$
B) $\frac{1}{3}$
C) 1
D) -3
5) Find a formula for $f(n)$ of the following geometric sequence: $10,50,250,1,250, \ldots$
A) $f(n)=10 \times 2^{n-1}$
B) $\mathrm{f}(n)=2 \times 5^{n-1}$
C) $\mathrm{f}(n)=10 \times 5^{n-1}$
D) $\mathrm{f}(n)=5 \times 2^{n-1}$
6) What is the next term in the arithmetic sequence -10, -17, -24, -31, ...?
A) 15
B) -45
C) -20
D) -38
7) Find an explicit form, $f(n)$, for the following arithmetic sequence: $2,5,8,11, \ldots$.
A) $f(n)=3(n-1)$
B) $f(n)=3 n-1$
C) $f(n)=2 n$
D) $f(n)=-9\left(\frac{1}{3}\right)^{n-1}$
8) What is the third term of the sequence defined by $f(1)=\frac{1}{2}$ and $f(n)=2 f(n-1)+1$ when $n>1$?
A) 4
B) 7
C) 5
D) 11
9) Suppose you put $\$ 1.50$ in a jar at the end of one week. One week later you put in $\$ 2.00$. At the end of the third week you deposit $\$ 2.50$, and continue to add 50% to the previous week's deposit thereafter. What is your weekly deposit at the end of the 27 th week?
A) $\$ 15.00$
B) $\$ 14.50$
C) $\$ 15.50$
D) $\$ 231.00$
10) A sequence has the following terms: $f(1)=4$, $f(2)=10, f(3)=25, f(4)=62.5$. Which formula represents the $n^{\text {th }}$ term in this sequence?
A) $f(n)=4+2.5 n$
B) $f(n)=4(2.5)^{n-1}$
C) $f(n)=4+2.5(n-1)$
D) $f(n)=4(2.5)^{n}$
11) Find the sixth term of the geometric sequence when $\mathrm{f}(4)=-8$ and $r=0.5$.
A) -2
B) 2
C) -4
D) 4
12) For the given arithmetic sequence, write an explicit formula for $f(n)$. Assume the initial value of n to be 1 .
$10,9.75,9.5,9.25, \ldots$
Show your work.

Answer: \qquad
13) For the sequence $-5,4,13,22, \ldots$ assume the pattern does not change.

Part A

Determine if the sequence is arithmetic, geometric, or neither.

Answer: \qquad

Part B

If geometric, state the common ratio. If arithmetic, state the common difference.

Answer: \qquad

Part C

Write a formula to represent the $n^{\text {th }}$ term when $n \geq 1$ for the sequence.
14) Find the first 6 terms of the sequence with $\mathrm{f}(1)=2$ and $\mathrm{f}(n)=3 \mathrm{f}(n-1)+3$ for $n \geq 2$.

Show your work.

Answer: \qquad

15) Part A

Write the first five terms of the sequence for which $f(n)=2\left(3^{n-1}\right)$.

Show your work.

Answer: \qquad

Part B

Is this sequence arithmetic, geometric, or neither?

Answer: \qquad
16) Given the following geometric sequence: 6,9 , 13.5, 20.25, ...

Part A

What is the common ratio for this sequence?

Answer: \qquad

Part B

Write an explicit formula, $f(n)$, for the sequence.
Show your work.

Answer: \qquad

Part C

Find the 10th term to the nearest hundredth.
Show your work.
17) For the sequence $-9,-3,-1,-\frac{1}{3}, \ldots$ assume the pattern does not change.

Part A

Determine if the sequence is arithmetic, geometric, or neither.

Answer: \qquad

Part B

If geometric, state the common ratio. If arithmetic, state the common difference.

Answer: \qquad

Part C

Write a formula to represent the $n^{\text {th }}$ term when $n \geq 1$ for the sequence.

Answer: \qquad
18) A ball is dropped from a height of 27 feet. On each rebound the ball rises to a height of twothirds that from which it fell.

Part A

Write a formula to determine how high the ball rises on n rebounds when $n \geq 0$.

Answer: \qquad

Part B

How far will the ball rise on the fourth rebound?

Show your work.

Answer: \qquad feet
19) During a flu outbreak, a hospital recorded 8 cases the first week, 20 cases the second week, and 50 cases the third week.

Part A

Write an explicit formula for a geometric sequence to model the flu outbreak when $n \geq 1$.

Answer: \qquad

Part B

Use the formula written for Part A to determine the total number of infected people after 5 weeks, rounded to the nearest person.

Show your work.

Answer: \qquad people
20) Gil is planning on adding a deck on the corner of his home. He is using the plan below to study the relationship between increasing the size of the deck and its resulting perimeter.

Figure 1 Figure 2
Figure 3 Figure 4
Deck Plan

Figure	1	2	3	4
Perimeter	10	14	18	22

Part A

Write an explicit formula to represents the perimeter, $\mathrm{P}(n)$, of the $n^{\text {th }}$ figure in the sequence?
Show your work.

Answer: \qquad

Part B

Use the formula written for Part A to determine the number of boxes needed to form the 10th figure in the sequence?

Show your work.

Answer: \qquad boxes

1) C
2) A
3) B
4) A
5) C
6) D
7) B
8) C
9) A
10) B
11) A
12) $\mathrm{f}(n)=-0.25 n+10.25$

WORK SHOWN: $a=10, d=9.75-10=-0.25, \mathrm{f}(n)=a+(n-1) d, \mathrm{f}(n)=10+(n-1)(-0.25)=10-0.25 n+0.25=-0.25 n+10.25$
13) Part A: arithmetic; Part B: $d=9 ; \underline{\text { Part } \mathrm{C}: ~} \mathrm{f}(n)=9 n-14$
14) $2,9,30,93,282,849$

WORK SHOWN: $\mathrm{f}(1)=\mathbf{2}$ and $\mathrm{f}(n)=3 \mathrm{f}(n-1)+3 ; \mathrm{f}(2)=3 \mathrm{f}(2-1)+3=6+3=\mathbf{9}, \mathrm{f}(3)=3 \mathrm{f}(3-1)+3=27+3=\mathbf{3 0}$, $\mathrm{f}(4)=3 \mathrm{f}(4-1)+3=90+3=\mathbf{9 3}, \mathrm{f}(5)=3 \mathrm{f}(5-1)+3=279+3=\mathbf{2 8 2}, \mathrm{f}(6)=3 \mathrm{f}(6-1)+3=846+3=\mathbf{8 4 9}$
15) Part $\mathrm{A}: 2,6,18,54,162 ;$ Part B: geometric
16) Part A: $r=\frac{3}{2}$;

Part B: $\mathrm{f}(n)=6\left(\frac{3}{2}\right)^{n-1}$
WORK SHOWN: $r=\frac{\mathrm{f}(2)}{\mathrm{f}(1)}, r=\frac{9}{6}=\frac{3}{2}, \mathrm{f}(n)=6\left(\frac{3}{2}\right)^{n-1}$;
Part C: $\mathrm{f}(10)=230.66$
WORK SHOWN: $\mathrm{f}(10)=6\left(\frac{3}{2}\right)^{10-1}, \mathrm{f}(10)=6\left(\frac{3}{2}\right)^{9}=6\left(\frac{19,683}{512}\right) \approx 230.66$
17) Part A: geometric; Part B: $r=\frac{1}{3}$;

Part C: $f(n)=-9\left(\frac{1}{3}\right)^{n-1}$
18) Part A: $\mathrm{h}(n)=27\left(\frac{2}{3} n^{n}\right.$;

Part B: $\frac{16}{3}$ feet OR 5.3 feet
WORK SHOWN: $\mathrm{h}(4)=27\left(\frac{2}{3}\right)^{4}=27\left(\frac{16}{81}\right)=\frac{16}{3}$
19) Part $\mathrm{A}: \mathrm{f}(n)=8(2.5)^{n-1}$;

Part B: 313 people
WORK SHOWN: $\mathrm{f}(5)=8(2.5)^{5-1}, f(5)=8(2.5)^{4}=313$
20) Part A: $\mathrm{P}(n)=4 n+6$

WORK SHOWN: $\mathrm{P}(1)=a=10, \mathrm{P}(2)=a+d, 14=10+d$,
$d=4 ; \mathrm{P}(n)=a+(n-1) d, \mathrm{P}(n)=10+(n-1) 4, \mathrm{P}(n)=4 n+6 ;$
Part B: 46
WORK SHOWN: $\mathrm{P}(10)=4(10)+6=46$

