\qquad

1) The function $f(x)=5 x^{2}+20 x+14$ will have
A) a minimum at $(-2,-6)$
B) a minimum at $(10,-86)$
C) a maximum at $(-2,-6)$
D) a minimum at $(-2,10)$
2) What is an equation of the axis of symmetry of the graph of the function $f(x)=2 x^{2}-5 x+3$?
A) $x=-\frac{5}{2}$
B) $x=-\frac{5}{4}$
C) $x=\frac{5}{2}$
D) $x=\frac{5}{4}$
3) Which quadratic function has the largest maximum?
A) $\mathrm{k}(x)=-5 x^{2}-12 x+4$
B) $\mathrm{h}(x)=(3-x)(2+x)$
C)

D)

\boldsymbol{x}	$\mathbf{f}(\boldsymbol{x})$
-1	-3
0	5
1	9
2	9
3	5
4	-3

4) Which point is not on the graph represented by $y=x^{2}+3 x-6$?
A) $(-4,-2)$
B) $(3,-6)$
C) $(2,4)$
D) $(-6,12)$
5) What are the zeros of the function
$f(x)=x^{2}-2 x-15$?
A) $x=5$ and $x=3$
B) $x=5$ and $x=-3$
C) $x=-5$ and $x=3$
D) $x=-5$ and $x=-3$
6) How does the graph of $f(x)=3(x-2)^{2}+1$ compare to the graph of $g(x)=x^{2}$?
A) The graph of $f(x)$ is wider than the graph of $g(x)$, and its vertex is moved to the left 2 units and up 1 unit.
B) The graph of $f(x)$ is wider than the graph of $g(x)$, and its vertex is moved to the right 2 units and up 1 unit.
C) The graph of $f(x)$ is narrower than the graph of $g(x)$, and its vertex is moved to the left 2 units and up 1 unit.
D) The graph of $f(x)$ is narrower than the graph of $\mathrm{g}(x)$, and its vertex is moved to the right 2 units and up 1 unit.
7) The coordinates of the vertex of the parabola whose equation is $\mathrm{g}(x)=x^{2}-6 x+8$ are
A) $(-3,35)$
B) $(-3,-1)$
C) $(3,-1)$
D) $(3,35)$
8) Which of the following is an accurate conclusion that can be drawn from the parabola below?

A) the maximum value is at $(0,9)$
B) the vertex is at $(3,0)$
C) the minimum value is at $(-3,0)$
D) the axis of symmetry is $y=9$
9) What are the zeros of the polynomial function graphed below?

A) $x=0$ and $x=-3$
B) $x=-1$ and $x=0$
C) $x=-1$ and $x=3$
D) $x=-3$ and $x=3$
10)

Which of the following statements best describes given the graph?
A) The y-intercept is 3 .
B) The axis of symmetry is $y=1$.
C) The maximum occurs when $x=3$.
D) The axis of symmetry is $x=1$.
11) The graph of the equation $y=a x^{2}$ is shown below.

If a is multiplied by $-\frac{1}{2}$, the graph of the new equation is
A) wider and opens downward
B) narrower and opens downward
C) wider and opens upward
D) narrower and opens upward
12. The graph below represents the parabolic path of a ball kicked by a young child. What are the vertex and the axis of symmetry for the parabola?

a. Vertex: $(3,8)$, axis of symmetry: $x=3$
b. Vertex: $(8,3)$, axis of symmetry: $x=3$
c. Vertex: $(3,8)$, axis of symmetry: $y=3$
d. Vertex: $(8,3)$, axis of symmetry: $y=3$
13. The equation $y=a x^{2}+b x+c$ is graphed on the set of axes below.

Based on the graph, what are the roots of the equation $a x^{2}+b x+c=0$?
a. 0 and 5
b. 1 and 0
c. 1 and 5
d. 3 and -4
14. The graph of a parabola is represented by the equation $y=a x^{2}$ where a is a positive integer. If a is multiplied by 2 , the new parabola will become
a. narrower and open downward
b. wider and open downward
c. narrower and open upward
d. wider and open upward
completing the square.
15.

$$
f(x)=x^{2}-6 x+14
$$

Show your work.

Equation:

\qquad
Vertex: \qquad
Axis of symmetry: \qquad
Range: \qquad
16. $f(x)=-x^{2}+14 x-46$

Show your work.

Equation:

\qquad

Vertex:

\qquad

Axis of symmetry:

\qquad

Range: \qquad
17. Find the equation of the axis of symmetry and the coordinates of the vertex for $f(x)=-2(x+3)^{2}+8$.

Axis of symmetry: \qquad
Vertex: \qquad
18. Find the equation of the axis of symmetry and the coordinates of the vertex for $f(x)=-2 x^{2}-4 x+6$.

Show your work.

Axis of symmetry: \qquad
Vertex: \qquad
19. What is the equation the graph of $y=x^{2}$ after it has been translated 3 units to the left and 7 units up?
20. Describe the transformation that would produce the graph of the function g from the graph of function f.
$f(x)=x^{2}, g(x)=\frac{1}{2}(x-2)^{2}-3$
21. (a) Graph the equation $y=x^{2}+2 x-8$ from $x=-5$ to $x=3$.
(b) Using the graph drawn in part (a), determine the roots of the equation.

22. The vertex of the parabola represented by $f(x)=x^{2}-4 x+3$ has coordinates ($2,-1$). Find the coordinates of the vertex of the parabola defined by $g(x)=f(x-2)$.

Show your work.
[The use of the set of axes below is optional.]

Explain how you arrived at your answer.
23. The function $p(x)$ includes the point $(0,5)$. What are the coordinates of the point after the shift of $p(x)-2$?
24. The function $m(x)$ includes the point $(-3,-4)$. What are the coordinates of the point after the shift of $m(x+4)$?
25. Alicia and Brent were comparing the vertex of two quadratic functions. Brent stated that $f(x)$ and $g(x)$ have different maximum values. Alicia thinks that both functions have a maximum of 6 . Is either of them correct? Justify your answer.

$$
g(x)=-x^{2}+3 x+4
$$

26. The path of a rocket fired during a fireworks display is given by the equation $h(t)=64 t-16 t^{2}$, where t is the time, in seconds, and $h(t)$ is its height, in feet.
(a) What is the maximum height, in feet, the rocket will reach? [only an algebraic solution will be accepted]
(b) How many seconds will it take the rocket to hit the ground? [only an algebraic solution will be accepted]
27. Solve the following system of equations algebraically:

$$
\begin{aligned}
& y=x^{2}-6 x+9 \\
& y=-x-7
\end{aligned}
$$

28. Let $f(x)=x^{2}+4 x-5$ and $g(x)=2 x+3$. On the set of axes below, draw the graphs of $y=f(x)$ and $y=g(x)$. Using this graph, determine and state all coordinates for which $f(x)=g(x)$.

29. Solve the following systems of equations graphically, on the set of axes below, and state the coordinates of the point(s) in the solution set.

$$
\begin{gathered}
y=x^{2}-6 x+5 \\
2 x+y=5
\end{gathered}
$$

32. Solve and check the following system

$$
\begin{aligned}
& y-2 x=3 \\
& y=-x^{2}-x+1
\end{aligned}
$$

