

A student is asked to solve the equation $4(3x - 1)^2 - 17 = 83$. The students solution to the problem starts as

$$4(3x - 1)^2 = 100$$
$$(3x - 1)^2 = 25$$

A correct next step in the solution of the problem is

- A) $3x 1 = \pm 25$
- B) $3x 1 = \pm 5$
- C) $9x^2 1 = 25$
- D) $9x^2 6x + 1 = 5$

- When solving the equation $x^2 - 8x - 7 = 0$ by completing the square, which one of the following equations is a step in the process?
 - A) $(x 8)^2 = 9$ $4)^2 = 9$
- What are the solutions to the equation $3x^2 + 10x = 8$?
 - $\frac{4}{3}$ and -2

Mar 16-12:30 PM

HW Answers

Page 467 # 10 - 15

$$10)t^2 + 2t - 224 = 0$$

$$t^2 + 2t = 224$$

$$t^2 + 2t + 1 = 224 + 1$$

$$(t+1)^2 = 225$$

$$t + 1 = \pm 15$$

$$\{14, -16\}$$

$$12)g^2 + 3g = -6$$

$$g^2 + 3g + \left(\frac{9}{4}\right) = -6 + \frac{9}{4}$$

$$\left(g + \frac{3}{2}\right)^2 = \frac{-15}{4}$$

No real solutions

$$(14)z^2 - 6z = -2$$

$$z^2 - 6z + 9 = -2 + 9$$

$$(z-3)^2 = 7$$

$$z-3=\pm\sqrt{7}$$

$$z = 3 \pm \sqrt{7}$$

$$11)x^2 + 18x = 175$$

$$x^2 + 18x + 81 = 175 + 81$$

$$(x+9)^2 = 256$$

$$x+9 = \pm 16$$

$$\{-25,7\}$$

$$13) p^2 - 3p = 18$$

$$p^2 - 3p + \frac{9}{4} = 18 + \frac{9}{4}$$

$$\left(p-\frac{3}{2}\right)^2 = \frac{81}{4}$$

$$p-\frac{3}{2}=\pm\frac{9}{2}$$

$$\{6,-3\}$$

$$(15)x^2 + 25 = 10x$$

$$x^2 - 10x = -25$$

$$x^2 - 10x + 25 = -25 + 25$$

$$(x-5)^2=0$$

$$x - 5 = 0$$

Mar 24-11:05 AM

Practice Solving Quadratics

Example 1: $x^2 - 7x - 30 = 0$

Factoring	Quadratic Formula	Completing the Square
$x^2 - 7x - 30 = 0$	$x^2 - 7x - 30 = 0$	$x^2 - 7x - 30 = 0$
(x+3)(x-10)=0	$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(1)(-30)}}{-(-7)^2 - 4(1)(-30)}$	$x^2 - 7x + \underline{\hspace{1cm}} = 30 + \underline{\hspace{1cm}}$
x+3=0 $x-10=0$	2(1)	$x^2 - 7x + \frac{49}{4} = 30 + \frac{49}{4}$
x = -3 $x = 10$	$x = \frac{7 \pm \sqrt{49 + 120}}{120}$	_ 4 4
	2	$(x-\frac{7}{2})^2=42\frac{1}{4}$
	$x = \frac{7 \pm \sqrt{169}}{2}$	$\sqrt{(x-\frac{7}{2})^2} = \sqrt{42\frac{1}{4}}$
	$x = \frac{7 \pm 13}{}$	$\sqrt{(x-\frac{1}{2})} = \sqrt{42-\frac{1}{4}}$
	2	$x - \frac{7}{2} = \pm 6\frac{1}{2}$
	$x = \frac{7+13}{2}$ $x = \frac{7-13}{2}$	7 1 7 1
	x=10 $x=-3$	$x - \frac{7}{2} = -6\frac{1}{2}$ $x - \frac{7}{2} = 6\frac{1}{2}$
	23 3	x = −3
If you can factor easily, it	Quadratic formula always	Completing the square
is the quickest method	works, but is a lot of writing	with an odd "b" can be
		messy

Mar 16-12:30 PM

Practice Solving Quadratics

Example 2: $x^2 + 8x = -3$

Factoring	Quadratic Formula	Completing the Square
$x^2 + 8x = -3$	$x^2 + 8x = -3$	$x^2 + 8x = -3$
$x^2 + 8x + 3 = 0$	$x^2 + 8x + 3 = 0$	$x^2 + 8x + \underline{\hspace{1cm}} = -3 + \underline{\hspace{1cm}}$
not factorable	$-(8) \pm \sqrt{(8)^2 - 4(1)(3)}$	$x^2 + 8x + 16 = -3 + 16$
(no factors of 3 that sum to	$x = {2(1)}$	$(x+4)^2=13$
	$x = \frac{-8 \pm \sqrt{52}}{}$	$\sqrt{(x+4)^2} = \sqrt{13}$
	2	$x+4=\pm\sqrt{13}$
	$x = \frac{-8 \pm \sqrt{4\sqrt{13}}}{2}$	$x = -4 \pm \sqrt{13}$
	$-8 \pm 2\sqrt{13}$	
	$x = {2}$	
	$x = -4 \pm \sqrt{13}$	
Can't use this method if	Quadratic formula always	Completing the square
your roots are irrational	works, but is a lot of	with an even "b" works
	writing	out well

Practice Solving Quadratics

The Discriminant: $\sqrt{b^2 - 4ac}$

One solution	Two Solutions	No Solution
$x^2 - 8x + 16 = 0$	$3x^2 = 12 - 6x$	$x^2 + 2x = -10$
$-(-8)\pm\sqrt{(-8)^2-4(1)(16)}$	$3x^2 + 6x - 12 = 0$	$x^2 + 2x + 10 = 0$
2(1)	$-6\pm\sqrt{(6)^2-4(3)(-12)}$	$-2\pm\sqrt{(2)^2-4(1)(10)}$
$8 \pm \sqrt{64 - 64}$	2(3)	2(1)
2	$-6\pm\sqrt{36+144}$	$-2\pm\sqrt{4-40}$
$\frac{8 \pm \sqrt{0}}{2} = \frac{8}{2} = 4$	6	2
2 2	6±√180	-2±√-36
	6	2
	$\frac{6\pm 6\sqrt{5}}{2} = 1\pm \sqrt{5}$	
	6	
Occurs whenever the	Occurs whenever the	Occurs whenever the
radicand is 0	radicand is a positive #	radicand is a negative #

Mar 16-12:30 PM

Practice Solving Quadratics

Questions 12 & 13: Solve the given equations using any method of your choice and express your answer in simplest radical form if needed:

and express your answer in simplest radical form if needed:

$$1(x^{3}+2x+4) = X(2x)$$

$$x^{3}+2x+4 = 2x$$

$$-2x$$

Mar 16-12:30 PM

Practice Solving Quadratics

Questions 12 & 13: Solve the given equations using any method of your choice and express your answer in simplest radical form if needed:

$$\frac{13}{2} = \frac{1}{2} = \frac{1$$

$$\chi = {}^{\pm}\sqrt{3}$$

Mar 16-12:30 PM