Name: \qquad Date: \qquad
CC Algebra

$$
\text { Recusive Sequence - Day } 2
$$

1) The table below represents the first 5 triangular numbers in a sequence graphically.

Figure in the Series	Triangular Number	Diagram
$1^{\text {st }}$	1	\ddots
$2^{\text {nd }}$	3	\ddots
$3^{\text {rd }}$	6	\ddots
$4^{\text {th }}$	10	$\therefore \because$
$5^{\text {th }}$	15	$\therefore \because \because$

Part A

Write a recursive definition for finding the $n^{\text {th }}$ term of this sequence.

Answer: \qquad

Part B

Use the definition written for Part A to determine the number of dots needed to form the 10th figure in the sequence?

Show your work.

Answer: \qquad dots
2) Tyler gets a starting salary of $\$ 22,600$, with annual raises of $\$ 800$.

Part A

Write an explicit formula to model Tyler's salary after n years of employment when $n \geq 1$.

Answer: \qquad

Part B

Write an equivalent recursive definition for representing Tyler's salary.

Answer: \qquad

Part C

What will his salary be during his fourth year on the job?
Show your work.

Answer: \$ \qquad
3) Determine the first three terms of the given sequence using the recursive rule:
$\mathrm{f}(1)=5$ and $\mathrm{f}(n+1)=\mathrm{f}(n)^{-2}-1$
Show your work.

Answer: \qquad
4) Given the sequence defined by the explicit formula $\mathrm{f}(n)=9-2(n-1)$, where $n \geq 1$. Part A

State the first 4 terms of this sequence.
Show your work.

Answer: \qquad

Part B

Rewrite the formula for this sequence using an equivalent recursive definition.

Show your work.

Answer: \qquad
5) Find the third term in the recursive sequence $f(k+1)=2 f(k)-1$, where $f(1)=3$.

Show your work.

Answer: \qquad
6) Find the first four terms of the recursive sequence defined below.

$$
\begin{aligned}
& \mathrm{f}(1)=-3 \\
& \mathrm{f}(n)=\mathrm{f}(n-1)-n
\end{aligned}
$$

Show your work.

Answer: \qquad
7) When Myra started college, tuition was $\$ 8,240$ per semester. Each year, the tuition per semester increased by $\$ 400$.

Part A

Write an explicit formula to model the semester tuition cost after n years when $n \geq 1$.

Answer: \qquad

Part B

Write an equivalent recursive definition to represent the semester tuition cost.

Answer: \qquad

Part C

What was the cost of tuition per semester during her fourth year at college?
Show your work.

Answer: \$

1) \quad Part $\mathrm{A}: ~ \mathrm{f}(1)=1, \mathrm{f}(n+1)=\mathrm{f}(n)+n$

Part B: 55 dots
WORK SHOWN: $\mathrm{f}(6)=\mathrm{f}(5)+6=21, \mathrm{f}(7)=\mathrm{f}(6)+7=28, \mathrm{f}(8)=\mathrm{f}(7)+8=36, \mathrm{f}(9)=\mathrm{f}(8)+9=45, \mathrm{f}(10)=\mathrm{f}(9)+10=55$
2) Part A: $S(n)=22,600+800(n-1)$;

Part B: $\mathrm{S}(1)=22,600$ and $\mathrm{S}(n+1)=800+\mathrm{S}(n)$;
Part C: $\$ 25,000$
WORK SHOWN: $S(4)=22,600+800(3)=25,000$
3) $5,-\frac{24}{25}, \frac{49}{576}$
4) Part A: 9, 7, 5, 3

WORK SHOWN: $\mathrm{f}(1)=9-2(1-1)=\mathbf{9}, \mathrm{f}(2)=9-2(2-1)=7, f(3)=9-2(3-1)=\mathbf{5}, \mathrm{f}(4)=9-2(4-1)=\mathbf{3}$;
Part B: $\mathrm{f}(1)=9$ and $\mathrm{f}(n+1)=\mathrm{f}(n)-2, n \geq 1$
WORK SHOWN: Arithmetic Sequence: $a=\mathrm{f}(1)=9, d=7-9=-2 ; \mathrm{f}(n+1)=\mathrm{f}(n)-2$
5) $f(3)=9$

WORK SHOWN: $\mathrm{f}(k+1)=2 \mathrm{f}(k)-1$ and $\mathrm{f}(1)=3 ; \mathrm{f}(2)=2 \mathrm{f}(1)-1=2(3)-1=5, \mathrm{f}(3)=2 \mathrm{f}(2)-1=2(5)-1=9$
6) $-3,-5,-8,-12$

WORK SHOWN: $\mathrm{f}(1)=\mathbf{- 3}$ and $\mathrm{f}(n)=\mathrm{f}(n-1)-n ; \mathrm{f}(1)=\mathrm{f}(2-1)-2=-3-2=\mathbf{- 5}, \mathrm{f}(3)=\mathrm{f}(3-1)-3=-5-3=\mathbf{- 8}, \mathrm{f}(4)=\mathrm{f}(4-1)-4=$ $-8-4=\mathbf{- 1 2}$
7) \quad Part A: $T(n)=8,240+400(n-1)$;

Part B: $S(1)=8,240$ and $S(n+1)=400+S(n)$;
Part C: \$9,440
WORK SHOWN: $S(4)=8,240+400(3)=9,440$

