DO NOW

Decide whether the table represents a linear or exponential function. Then, write the function formula.

X	0	1	2	3	4
У	12	8	4	0	-4

Linear or Exponential? $y = \frac{-4x + 12}{}$

X	-1	0	1	2	3
У	40.5	27	18	12	8

Linear or Exponential? $y = \frac{27 \cdot (\frac{2}{3})}{3}$

Jan 2-1:01 PM

Homework Answers

(a) Linear

$$y = 3x + 7$$

(b) Exponential

$$y = 2(3)^{x}$$

(c) Exponential

$$y = 8(.5)^{x}$$

2. (1)

(d) Linear

$$y = -16x$$

(e) Exponential

$$y = 16(1.25)^{x}$$

(f) Linear

$$y = -20x + 180$$

Exponential Growth and Decay

Increasing and decreasing exponentially

Exponential growth -- when a quantity increases by a certain factor over time.

EX: compound interest or population increase

To find exponential growth use the formula:

$$f(t) = a(1+r)^t$$

'r' is the rate <u>expressed as a decimal</u>
't' is the # of time intervals

Jan 2-11:45 AM

Jack deposits \$1000 into an account that pays 5% compound interest. How much will Jack have in her account after 5

$$f(t) = a(1+r)^{T}$$

$$f(5) = 100(1+.05)^{5}$$

$$f(6) = 100(1.05)^{5}$$

$$f(6) = 1276.2815...$$

Exponential decay -- a quantity decreases by a certain factor over time

EX: a car's value depreciating (going down) over time.

Use the formula to find exponential decay:

$$f(t) = a(1 - r)^{t}$$

EX: If your parents buy a car for \$25,000 and it depreciates at a rate of 12% each year, you can find the car's value after 5 years using the formula above.

5 years using the formula above.

$$a = 26000$$
 $f(t) = a(1-r)^{t}$
 $f(5) = 2600(1-12)^{5}$
 $f(5) = 2600(.88)^{5}$
 $f(6) = 13193.397.$
 $f(6) = 13193.30$

Jan 2-11:53 AM

Tell whether the function is an exponential growth function or exponential decay function, and find the constant percentage rate of growth.

Exercise 3: $P(t)=3.5(1.09)^{t}$

a. Exponential Decay, 3.5%

c. Exponential Growth, 9%

b. Exponential Decay, 9%

d. Exponential Growth, .09%

Exercise 4: $P(x) = 200(.85)^x$

a. Exponential Decay, 85%

c. Exponential Growth, 85%

b. Exponential Decay, 15% d. Exponential Growth, 200%