Name:

CC Algebra - Function Practice

1) What is the average rate of change of y with respect to x from x = 2 to x = 5 when $y = x^2 - 3x$?

A)	<u>8</u> 3	C) $\frac{1}{4}$	E)	4
B)	3	D) 1		

2) The table below shows various values of function f on the interval [-2,3].

X	f(<i>x</i>)			
-2	-16			
-1	-3			
0	0			
1	-1			
2	0			
3	9			

What is the average rate of change of function f on this interval?

Show your work.

Answer: _____

3) The accompanying graph shows the elevation of a certain region in New York State as a hiker travels along a trail.

What is the domain of this function?

- A) $\{y \mid 0 \le y \le 12\}$
- B) $\{x \mid 1,000 \le x \le 1,500\}$
- C) $\{x \mid 0 \le x \le 12\}$
- D) $\{y \mid 1,000 \le y \le 1,500\}$
- 4) The height, in feet, of a baseball t seconds after it leaves the bat is given by $h(t) = -16t^2 + 45t + 4$. What is the average rate of change of the height, in feet per second, from time t = 0 to t = 2?

Show your work.

Answer: ______ft/sec

Questions 5 and 6 refer to the following:

Use the accompanying graph to compute the average rate of change of function f over the indicated interval:

5) [6,10]

Show your work.

Answer: _____

6) [-8,10]

Show your work.

Answer: _____

7) Given below are three functions f(x), g(x), and h(x).

(A)
$$f(x) = 2x^2 - 4x$$

(B) $\begin{array}{c|c} x & g(x) \\ \hline -2 & -6 \\ 0 & 8 \end{array}$

Arrange these three functions in decreasing order from *greatest* to *least* in value for the average rate of change over the interval $-2 \le x \le 4$.

Show your work.

Answer: _____

8) Given below are three functions f(x), g(x), and h(x). 9)

(A) f(x) = 2x - 7

Determine which of the functions have the same average rate of change over the interval $-1 \le x \le 3$.

Show your work.

Answer: _____

Which of the following describes the graph shown?

10) Which of the following describes the graph shown? Questions 11 through 16 refer to the following:

For the function f(x) =
$$\begin{cases} x^3 - 2 & \text{if } x \le 0 \\ x^2 & \text{if } 0 < x \le 1, \text{ find the} \\ 2x - 1 & \text{if } x > 1 \end{cases}$$

indicated functional value:

- 11) f(1) = _____
 12) f(2) = _____
 13) f(-3) = _____
- 14) $f(-\frac{1}{2}) =$ _____
- 15) f(0) = _____
- 16) f(-1) = _____

1) E

2) 5
WORK SHOWN:
$$\frac{\Delta y}{\Delta x} = \frac{f(3) - f(-2)}{3 - (-2)} = \frac{9 - (-16)}{5} = \frac{25}{5} = 5$$

4) 13 ft/sec
WORK SHOWN:
$$\frac{\Delta h}{\Delta t} = \frac{h(2) - h(0)}{(2 - 0)} = \frac{30 - 4}{2} = \frac{26}{2} = 13$$

5) -3

WORK SHOWN: [6,10],
$$f(x) = \frac{g(10) - g(6)}{10 - 6} = \frac{-3 - 9}{4} = -\frac{12}{4} = -3$$

6)
$$-\frac{1}{3}$$

WORK SHOWN: [-8,10], $f(x) = \frac{g(10) - g(-8)}{10 - (-8)} = \frac{-3 - (3)}{18} = -\frac{6}{18} = -\frac{1}{3}$

7)
$$g(x), h(x), f(x) \text{ OR } B \to C \to A$$

WORK SHOWN: $\frac{\Delta y}{\Delta x} = \frac{f(4) - f(-2)}{4 - (-2)} = \frac{16 - 16}{6} = \frac{0}{6} = 0;$
 $\frac{\Delta y}{\Delta x} = \frac{g(4) - g(-2)}{4 - (-2)} = \frac{14 - (-6)}{6} = \frac{20}{6} = \frac{10}{3};$
 $\frac{\Delta y}{\Delta x} = \frac{h(4) - h(-2)}{4 - (-2)} = \frac{8 - 2}{6} = \frac{6}{6} = 1$

8)
$$f(x)$$
 and $h(x)$ OR A and C
WORK SHOWN: $\frac{\Delta y}{\Delta x} = \frac{f(3) - f(-1)}{3 - (-1)} = \frac{-1 - (-9)}{4} = \frac{8}{4} = 2;$
 $\frac{\Delta y}{\Delta x} = \frac{g(3) - g(-1)}{3 - (-1)} = \frac{16 - (-8)}{4} = \frac{24}{4} = 6;$
 $\frac{\Delta y}{\Delta x} = \frac{h(3) - h(-1)}{3 - (-1)} = \frac{9 - 1}{4} = \frac{8}{4} = 2$

- 9) B 10) C
- 11) f(1) = 1
- 12) f(2) = 3
- 13) f(-3) = -29
- 14) $f(-\frac{1}{2}) = -\frac{17}{8}$
- 15) f(0) = -2
- 16) f(-1) = -3